
Chapter 3

Fuzzy Averaging for
Forecasting

Forecasting1 provides the basis for any production activity. The ability
to predict and estimate future events requires the study of imprecise
data information coming from a rapidly changing environment, a task
for which fuzzy logic is better suited to deal with than classical methods.
Analysis of complex situations needs the efforts and opinions of many
experts. The experts opinions, almost never identical, are either more
or less close or more or less conflicting. They have to be combined
or aggregated in order to produce one conclusion. In this chapter the
methodology of fuzzy averaging is introduced. It is used as a major
tool for aggregation in various forecasting models (fuzzy Delphi, project
management, forecasting demand). In Chapter 4 fuzzy averaging is
applied to decision making.

3.1 Statistical Average

One of the most important concepts in statistics is the average or mean
of n measurements, readings, or estimates expressed by real numbers
r1, . . . , rn. It is defined by

rave =
r1 + · · · + rn

n
=

∑n
i=1 ri

n
; (3.1)
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the measurements are considered of equal importance. The average
which is typical or representative of n measurements is also known as a
measure of central tendency.

If the measurements r1, . . . , rn have different importance expressed
by the real numbers λ1, . . . , λn, correspondingly, then the concept of
weighted average or weighted mean is introduced by the formula

rw
ave =

λ1r1 + · · · + λnrn

λ1 + · · · + λn
= w1r1 + · · · + wnrn =

n
∑

i=1

wiri. (3.2)

Here wi called weights are given by

wi =
λi

λ1 + · · · + λn
, i = 1, . . . , n, w1 + · · ·+ wn =

n
∑

i=1

wi = 1. (3.3)

The weights reflect the relative importance or strength of the measure-
ments ri.

The concept of average, we may call it crisp average, can be gener-
alized by substituting fuzzy numbers for the real numbers ri in formu-
las (3.1) and (3.2). For that purpose arithmetic operations with fuzzy
numbers have to be performed, which in general requires complicated
computations. Here we restrict the generalization procedure to triangu-
lar and trapezoidal numbers. They are used very often in applications
and besides, it is easy to perform arithmetic operations with them; this
is demonstrated in the next section.2

3.2 Arithmetic Operations with Triangular and
Trapezoidal Numbers

Addition of triangular numbers

It can be proved that the sum of two triangular numbers A1 =

(a
(1)
1 , a

(1)
M , a

(1)
2 ) and A2 = (a

(2)
1 , a

(2)
M , a

(2)
2 ), is also a triangular number,

A1 + A2 = (a
(1)
1 , a

(1)
M , a

(1)
2 ) + (a

(2)
1 , a

(2)
M , a

(2)
2 )

= (a
(1)
1 + a

(2)
1 , a

(1)
M + a

(2)
M , a

(1)
2 + a

(2)
2 ). (3.4)
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This summation formula can be extended for n triangular numbers.
Also it can be applied for left and right triangular numbers (Section 1.5).
For instance:

Ar
1 + A2 = (a

(1)
M , a

(1)
M , a

(1)
2 ) + (a

(2)
1 , a

(2)
M , a

(2)
2 )

= (a
(1)
M + a

(2)
1 , a

(1)
M + a

(2)
M , a

(1)
2 + a

(2)
2 ),

Al
1 + Al

2 = (a
(1)
1 , a

(1)
M , a

(1)
M ) + (a

(2)
1 , a

(2)
M , a

(2)
M )

= (a
(1)
1 + a

(2)
1 , a

(1)
M + a

(2)
M , a

(1)
M + a

(2)
M ).

Example 3.1

The sum of the triangular numbers

A1 = (−5,−2, 1), A2 = (−3, 4, 12),

according to (3.4) is the triangular number

A1 + A2 = (−5 + (−3),−2 + 4, 1 + 12) = (−8, 2, 13)

shown on Fig. 3.1.

1

12

x

0 1 13

A
2

A1

A1 A2+
µ

−8 −5 −3

Fig. 3.1. Sum of two triangular numbers.
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Figure 3.1 can be interpreted as follows. If A1 describes real numbers
close to −2 and A2 describes real numbers close to 4, then A1 + A2

represents real numbers close to −2 + 4 = 2.
2

Example 3.2

Now let us find the sum of three triangular numbers:

Ar
1 = (0, 0, 2), A2 = (1, 3, 4), Al

3 = (3, 6, 6);

Ar
1 and Al

3 are right and left triangular numbers. The extended formula
(3.4) gives (see Fig. 3.2)

Ar
1 + A2 + Al

3 = (0 + 1 + 3, 0 + 3 + 6, 2 + 4 + 6) = (4, 9, 12).

x

1

µ

+ +21 33

r l lr
A A A A A A1 2

120 1 2 3 4 6 9

Fig. 3.2. Sum of Ar
1, A2, and Al

3.

2

Multiplication of a triangular number by a real number

The product of a triangular number A with a real number r is also a
triangular number,

Ar = rA = r(a1, aM , a2) = (ra1, raM , ra2). (3.5)
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Division of a triangular number by a real number

This operations is defined as multiplication of A by 1
r

provided that
r 6= 0. Hence (3.5) gives

A

r
=

1

r
(a1, aM , a2) = (

a1

r
,
aM

r
,
a2

r
). (3.6)

Example 3.3

(a) The product of A = (2, 4, 5) by 2 according to (3.5) is (see
Fig. 3.3)

2A = 2(2, 4, 5) = (4, 8, 10).

(b) The division of A = (2, 4, 5) by 2 using (3.6) produces (Fig. 3.3)

A

2
=

1

2
(2, 4, 5) = (1, 2, 2.5).

(c) Also

2A

2
=

(4, 8, 10)

2
= A, 2(

A

2
) = 2(1, 2, 2.5) = A.

1

µ

0 1 2 3 4

A A
A
2 2

10

x

5 8

Fig. 3.3. Triangular number A = (2, 4, 5); product 2A; quotient A

2 .

2

Operations with trapezoidal numbers can be performed similarly to
those with triangular numbers.
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Addition of trapezoidal numbers

The sum of the trapezoidal numbers A1 = (a
(1)
1 , b

(1)
1 , b

(1)
2 , a

(1)
2 ) and A2 =

(a
(2)
1 , b

(2)
1 , b

(2)
2 , a

(2)
2 ) is also a trapezoidal number,

A1 + A2 = (a
(1)
1 , b

(1)
1 , b

(1)
2 , a

(1)
2 ) + (a

(2)
1 , b

(2)
1 , b

(2)
2 , a

(2)
2 )

= (a
(1)
1 + a

(2)
1 , b

(1)
1 + b

(2)
1 , b

(1)
2 + b

(2)
2 , a

(1)
2 + a

(2)
2 ). (3.7)

Formula (3.7) can be generalized for n trapezoidal numbers and also
for left and right trapezoidal numbers.

Multiplication of a trapezoidal number by a real number

Ar = rA = (ra1, rb1, rb2, ra2). (3.8)

Division of a trapezoidal number by a real number

A

r
=

1

r
A = (

a1

r
,
b1

r
,
b2

r
,
a2

r
), r 6= 0. (3.9)

Sum of triangular and trapezoidal numbers

Consider the triangular number A1 = (a
(1)
1 , a

(1)
M , a

(1)
2 ) which can be pre-

sented as a trapezoidal number (a
(1)
1 , a

(1)
M , a

(1)
M , a

(1)
2 ) and the trapezoidal

number A2 = (a
(2)
1 , b

(2)
1 , b

(2)
2 , a

(2)
2 ). Using (3.7) gives

A1 + A2 = (a
(1)
1 , a

(1)
M , a

(1)
M , a

(1)
2 ) + (a

(2)
1 , b

(2)
1 , b

(2)
2 , a

(2)
2 )

= (a
(1)
1 + a

(2)
1 , a

(1)
M + b

(2)
1 , a

(1)
M + b

(2)
2 , a

(1)
2 + a

(2)
2 ). (3.10)

3.3 Fuzzy Averaging

Triangular average formula

Consider n triangular numbers Ai = (a
(i)
1 , a

(i)
M , a

(i)
2 ), i = 1, . . . , n. Using

addition of triangular numbers and division by a real number (see (3.4)
and (3.6)) gives the triangular average (mean) Aave,
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Aave =
A1 + · · · + An

n

=
(a

(1)
1 , a

(1)
M , a

(1)
2 ) + · · · + (a

(n)
1 , a

(n)
M , a

(n)
2 )

n

=
(
∑n

i=1 a
(i)
1 ,
∑n

i=1 a
(i)
M ,
∑n

i=1 a
(i)
2 )

n
,

which is a triangular number,

Aave = (m1,mM ,m2) = (
1

n

n
∑

i=1

a
(i)
1 ,

1

n

n
∑

i=1

a
(i)
1 ,

1

n

n
∑

i=1

a
(i)
2 ). (3.11)

Example 3.4

(a) The triangular numbers A1 and A2 in Example 3.1 have average

Aave =
A1 + A2

2
=

(−8, 2, 13)

2
= (−4, 1, 6.5).

(b) The triangular numbers Ar
1,A2, and Al

3 in Example 3.2 have
average

Aave =
Ar

1 + A2 + Al
3

3
=

(4, 9, 12)

3
= (1.33, 3, 4).

2

Weighted triangular average formula

If the real numbers λi represent the importance of Ai = (a
(i)
1 , a

(i)
M , a

(i)
2 ),

i = 1, . . . , n, then following (3.2), using (3.3), and similarly to (3.11) we
obtain the weighted triangular average (mean),

Aw
ave =

λ1A1 + · · · + λnAn

λ1 + · · · + λn

= w1(a
(1)
1 , a

(1)
M , a

(1)
2 ) + · · · + wn(a

(n)
1 , a

(n)
M , a

(n)
2 )

= (w1a
(1)
1 , w1a

(1)
M , w1a

(1)
2 ) + · · · + (wna

(n)
1 , wna

(n)
M , w

(n)
2 )

= (w1a
(1)
1 + · · · + wna

(n)
1 , w1a

(1)
M + · · · + wna

(n)
M ,

w1a
(1)
2 + · · · + wna

(n)
2 ),
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which can be written as

Aw
ave = (mw

1 ,mw
M ,mw

2 ) = (
n
∑

i=1

wia
(i)
1 ,

n
∑

i=1

wia
(i)
M ,

n
∑

i=1

wia
(i)
2 ). (3.12)

Average formulas for trapezoidal numbers which can be derived sim-
ilarly to (3.11) and (3.12) are presented below.

Trapezoidal average formula

If Ai = (a
(i)
1 , b

(i)
1 , b

(i)
2 , a

(i)
2 ), i = 1, . . . , n, are trapezoidal numbers, then

Aave = (m1,mM1
,mM2

,m2)

=
(a

(1)
1 , b

(1)
1 , b

(1)
2 , a

(1)
2 ) + · · · + (a

(n)
1 , b

(n)
1 , b

(n)
2 , a

(n)
2 )

n

=
(
∑n

i=1 a
(i)
1 ,
∑n

i=1 b
(i)
1 ,
∑n

i=1 b
(i)
2 ,
∑n

i=1 a
(i)
2 )

n
. (3.13)

Weighted trapezoidal average formula

Aw
ave = (mw

1 ,mw
M1

,mw
M2

,mw
2 )

= w1(a
(1)
1 , b

(1)
1 , b

(1)
2 , a

(1)
2 ) + · · · + wn(a

(n)
1 , b

(n)
1 , b

(n)
2 , a

(n)
2 )

= (
n
∑

i=1

wia
(i)
1 ,

n
∑

i=1

wib
(i)
1 ,

n
∑

i=1

wib
(i)
2 ,

n
∑

i=1

wia
(i)
2 ). (3.14)

The triangular and trapezoidal average and weighted average formu-
las (3.11)–(3.14) produce a result which can be interpreted as follows.
It is a conclusion or aggregation of all combined meanings expressed
by triangular and trapezoidal numbers A1, . . . ,An considered either of
equal importance or of different importance expressed by weights wi.

Based on the arithmetic operations in Section 3.2, we can state that:
1) Formulas (3.11)–(3.14) remain valid when some of Ai are left or

right triangular or trapezoidal numbers.
2) Formulas (3.13) and (3.14) for trapezoidal numbers remain valid

when some Ai are triangular numbers since they can be expressed in
the form of trapezoidal numbers.
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The process of averaging presented here is a cross section of classical
statistics and fuzzy sets theory; it belongs to a new branch of science—
fuzzy statistics.

Defuzzification of fuzzy average

The aggregation defined by a triangular or trapezoidal average number
((3.11)–(3.14)) very often has to be expressed by a crisp value which
represent best the corresponding average. This operation is called de-
fuzzification.

First consider the defuzzification of Aave = (m1,mM ,m2) given in
(3.11). It looks plausible to select for that purpose the value mM in the
supporting interval [m1,m2] of Aave; mM has the highest degree (one)
of membership in Aave. In other words, Aave attains its maximum at

xmax = mM (3.15)

which we call maximizing value.
However the operation defuzzification can not be defined uniquely.

Here we present three options for defuzzifying Aave = (m1,mM ,m2)
which are essentially statistical average formulas:

(1) x(1)
max =

m1 + mM + m2

3
,

(2) x(2)
max =

m1 + 2mM + m2

4
, (3.16)

(3) x(3)
max =

m1 + 4mM + m2

6
.

Contrary to (3.15), the values (3.16) take into consideration the
contribution of m1 and m2 but give different weight to mM .

If the triangular number Aave is close to a central triangular number
(see Fig. 1.18 (a)) meaning that mM is almost in the middle of [m1,m2],
then (3.15) gives a good crisp value xmax = mM . Then the three average
formulas (1)–(3) in (3.16) also produce numbers (maximizing values)
close to mM hence there is no need to be used. Usually in applications
the triangular average numbers appear to be in central form. However,
the experts dealing with a given situation have to use their judgement
when selecting a maximizing value.
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The defuzzification procedure is presented as a block diagram in
Fig. 3.4.

=

Fuzzy

Average
∑n

i=1
Ai

n
Aave

Triangular

Numbers

Ai

Aggregation
Maximizing

Value

xmax

x
(1),(2),(3)
maxi = 1, · · · , n

Fig. 3.4. Defuzzification of fuzzy average Aave = (m1,m2,m3).

For the defuzzification of Aw
ave = (mw

1 ,mw
M ,mw

2 ) formulas (3.15)
and (3.16) remains valid provided mw

1 ,mw
M ,mw

2 are substituted for
m1,mM ,m2 correspondingly.

The defuzzification of the trapezoidal average Aave = (m1,mM1
,

mM2
,m2) can be performed by an extension of (3.15) and (3.16) using

instead of mM the midpoint of the flat segment mM1
mM2

at maximum
level α = 1. The maximizing values are as follows:

xmax =
mM1

+ mM2

2
, (3.17)

and

(1) x(1)
max =

m1 +
mM1

+mM2

2 + m2

3
,

(2) x(2)
max =

m1 + mM1
+ mM2

+ m2

4
, (3.18)

(3) x(3)
max =

m1 + 2(mM1
+ mM2

) + m2

6
.

For the defuzzification of Aw
ave = (mw

1 ,mw
M1

,mw
M2

,mw
2 ) formulas

(3.17) and (3.18) hold but mw
1 ,mw

M1
,mw

M2
,mw

2 have to be substituted
for m1,mM1

,mM2
,m2.

Similar block diagrams like that on Fig. 3.4. can be constructed to
illustrate defuzzification for the fuzzy averages (3.12)–(3.14).
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3.4 Fuzzy Delphi Method for Forecasting

Fuzzy Delphi method is a generalization of the classical method for long
range forecasting in management science known as Delphi method.

It was developed in the sixties by the Rand Corporation at Santa
Monica, California. The name comes from the ancient Greek oracles of
Delphi who were famous for forecasting the future.

The essence of Delphi method can be described as follows:

(i) Experts with high qualification regarding a subject are requested
to give their opinion separately and independently of each other about
the realization dates of a certain event, say in science, technology, or
business. They may be asked to forecast the general state of the market,
economy, technological advances, etc.

(ii) The data which have subjective character are analyzed statisti-
cally by finding their average (see (3.1)) and the results are communi-
cated to the experts.

(iii) The experts review the results and provide new estimates which
are analyzed statistically and sent again to the experts for estimation.

(iv) This process could be repeated again and again until the out-
come converges to a reasonable solution from the point of view of a
manager or a governing body. Usually two or three repetitions are suf-
ficient.

However, long range forecasting problems involve imprecise and in-
complete data information. Also the decisions made by the experts rely
on their individual competence and are subjective. Therefore it is more
appropriate the data to be presented by fuzzy numbers instead of crisp
numbers. Especially triangular numbers are very suitable for that pur-
pose since they are constructed easily by specifying three values, the
smallest, the largest, and the most plausible (see Section 1.5). Instead
of crisp average, the analysis will be based on fuzzy average.

The Fuzzy Delphi method was introduced by Kaufman and Gupta
(1988). It consists of the following steps.

Step 1. Experts Ei, i = 1, . . . , n, are asked to provide the possible
realization dates of a certain event in science, technology, or business,

namely: the earlist date a
(i)
1 , the most plausible date a

(i)
M , and the latest

date a
(i)
2 . The data given by the experts Ei are presented in the form
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of triangular numbers

Ai = (a
(i)
1 , a

(i)
M , a

(i)
2 ), i = 1, . . . , n. (3.19)

Step 2. First, the average (mean) Aave = (m1,mM ,m2) of all Ai is
computed (see (3.11)).

Then for each expert Ei the deviation between Aave and Ai is com-
puted. It is a triangular number defined by

Aave −Ai = (m1 − a
(i)
1 ,mM − a

(i)
M ,m2 − a

(i)
2 )

=

(

1

n

n
∑

i=1

a
(i)
1 − a

(i)
1 ,

1

n

n
∑

i=1

a
(i)
M − a

(i)
M ,

1

n

n
∑

i=1

a
(i)
2 − a

(i)
2

)

. (3.20)

The deviation Aave−Ai is sent back to the expert Ei for reexamination.
Step 3. Each expert Ei presents a new triangular number

Bi = (b
(i)
1 , b

(i)
M , b

(i)
2 ), i = 1, . . . , n. (3.21)

This process starting with Step 2 is repeated. The triangular av-
erage Bm is calculated according to formula (3.11) with the difference

that now a
(i)
1 , a

(i)
M , a

(i)
2 are substituted correspondingly by b

(i)
1 , b

(i)
M , b

(i)
2 .

If necessary, new triangular numbers C(i) = (c
(i)
1 , c

(i)
M , c

(i)
2 ) are gener-

ated and their average Cm is calculated. The process could be repeated
again and again until two successive means Aave,Bave,Cave, . . . become
reasonably close.
Step 4. At a later time the forecasting may be reexamined by the
same process if there is important information available due to new
discoveries.

Fuzzy Delphi method is a typical multi-experts forecasting procedure
for combining views and opinions.

Case Study 1 Time Estimation for Technical Realization of an Inno-
vative Product3

A group of 15 computer experts are asked to give estimation us-
ing Fuzzy Delphi method for the technical realization of a brand new
product, say a cognitive information processing computer. They are
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ranked equally hence their opinions carry the same weight. The trian-
gular numbers Ai, i = 1, . . . , 15 (see (3.19)) presented by the experts
are shown on Table 3.1.

Table 3.1. Triangular numbers Ai presented by experts (first request).

Ei Ai Earliest date Most plausible date Lates date

E1 A1 a
(1)
1 = 1995 a

(1)
M = 2003 a

(1)
2 = 2020

E2 A2 a
(2)
1 = 1997 a

(2)
M = 2004 a

(2)
2 = 2010

E3 A3 a
(3)
1 = 2000 a

(3)
M = 2005 a

(3)
2 = 2010

E4 A4 a
(4)
1 = 1998 a

(4)
M = 2003 a

(4)
2 = 2008

E5 A5 a
(5)
1 = 2000 a

(5)
M = 2005 a

(5)
2 = 2015

E6 A6 a
(6)
1 = 1995 a

(6)
M = 2010 a

(6)
2 = 2015

E7 A7 a
(7)
1 = 2010 a

(7)
M = 2018 a

(7)
2 = 2020

E8 A8 a
(8)
1 = 1995 a

(8)
M = 2007 a

(8)
2 = 2013

E9 A9 a
(9)
1 = 1995 a

(9)
M = 2002 a

(9)
2 = 2007

E10 A10 a
(10)
1 = 2008 a

(10)
M = 2009 a

(10)
2 = 2020

E11 A11 a
(11)
1 = 2010 a

(11)
M = 2020 a

(11)
2 = 2024

E12 A12 a
(12)
1 = 1996 a

(12)
M = 2002 a

(12)
2 = 2006

E13 A13 a
(13)
1 = 1998 a

(13)
M = 2006 a

(13)
2 = 2010

E14 A14 a
(14)
1 = 1997 a

(14)
M = 2005 a

(14)
2 = 2012

E15 A15 a
(15)
1 = 2002 a

(15)
M = 2010 a

(15)
2 = 2020

To find the average Aave the sums of the numbers in the last three
columns are calculated

15
∑

i=1

a
(i)
1 = 29996,

15
∑

i=1

a
(i)
M = 30109,

15
∑

i=1

a
(i)
2 = 30210

and substituted into (3.11) which gives

Aave = (
29996

15
,

30109

15
,

30210

15
) = (1999.7, 2007.3, 2014)

or approximately
Aa

ave = (2000, 2007, 2014).
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The deviations (3.20) between Aa
ave and Ai are presented in Ta-

ble 3.2.

Table 3.2. Deviation Aa
ave −Ai.

Ei m1 − a
(i)
1 mM − a

(i)
M m2 − a

(i)
2

E1 5 4 −6
E2 3 3 4
E3 0 2 4
E4 2 4 6
E5 0 2 −1
E6 5 −3 −1
E7 −10 −11 −6
E8 5 0 1
E9 5 5 7
E10 −8 −2 −6
E11 −10 −13 −10
E12 4 5 8
E13 2 1 4
E14 3 2 2
E15 −2 −3 −6

Table 3.2 shows the divergence of each expert’s opinion from the
average. A quick glance gives that the experts E3, E5, E8, E13, E14 are
close to the average while E7, E11 are not.

Since the word close is fuzzy a more detailed study requires some
clarification. It can be based on the concept of distance dij between two
triangular numbers Ai and Aj. If all dij are calculated and recorded
in a table (in our case consisting of 15 rows and columns), then we
will have a better grasp on how close are various pairs of Ai and Aj .
Here we do not give a formula for calculating the distance dij (there are
several),4 but refer to Kaufmann and Gupta (1988).

Suppose the manager is not satisfied with the average (2000, 2007,

2014). Then the deviation (m1 − a
(i)
1 ,mM − a

(i)
M ,m2 − a

(i)
2 ) is given to

each expert Ei for reconsideration. The experts suggest new triangular
numbers Bi (see (3.21)) presented on Table 3.3.
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Table 3.3. Triangular numbers presented by experts (second request).

Ei Bi Earliest date Most plausible date Lates date

E1 B1 b
(1)
1 = 1996 b

(1)
M = 2004 b

(1)
2 = 2018

E2 B2 b
(2)
1 = 1997 b

(2)
M = 2004 b

(2)
2 = 2011

E3 B3 b
(3)
1 = 2000 b

(3)
M = 2005 b

(3)
2 = 2011

E4 B4 b
(4)
1 = 1998 b

(4)
M = 2003 b

(4)
2 = 2010

E5 B5 b
(5)
1 = 2000 b

(5)
M = 2005 b

(5)
2 = 2015

E6 B6 b
(6)
1 = 1997 b

(6)
M = 2009 b

(6)
2 = 2015

E7 B7 b
(7)
1 = 2005 b

(7)
M = 2015 b

(7)
2 = 2016

E8 B8 b
(8)
1 = 1996 b

(8)
M = 2007 b

(8)
2 = 2013

E9 B9 b
(9)
1 = 1997 b

(9)
M = 2004 b

(9)
2 = 2010

E10 B10 b
(10)
1 = 2004 b

(10)
M = 2009 b

(10)
2 = 2017

E11 B11 b
(11)
1 = 2004 b

(11)
M = 2015 b

(11)
2 = 2016

E12 B12 b
(12)
1 = 1996 b

(12)
M = 2004 b

(12)
2 = 2006

E13 B13 b
(13)
1 = 1998 b

(13)
M = 2006 b

(13)
2 = 2010

E14 B14 b
(14)
1 = 1997 b

(14)
M = 2004 b

(14)
2 = 2012

E15 B15 b
(15)
1 = 2001 b

(15)
M = 2009 b

(15)
2 = 2015

The experts E5, E12, and E13 have not change their first estimate.
Other experts, for instance E2, E3, E8, E14, made very small changes.

Using again (3.11), this time to find Bave, gives

Bave = (1999.07, 2006.9, 2013.2)

which is approximately Ba
ave = (1999, 2007, 2013).

The manager is satisfied that Aave and Bave, also Aa
ave and Ba

ave, are
very close (see Fig. 3.5), stops the fuzzy Delphi process, and accepts the
triangular number Ba

ave as a combined conclusion of experts’ opinions.
The interpretation is that the realization of the invention will occur in
the time interval [1999, 2013], the supporting interval of the triangular
number Ba

ave which is almost in central form. The most likely year for
the realization according to the defuzzification formula (3.15) is 2007.
Formulas (3.16) produce numbers close to 2007.
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µ

1

0

x

B Aave ave

2014200720001999 2013

a a

Fig. 3.5. Average triangular numbers Aa
ave and Ba

ave.

3.5 Weighted Fuzzy Delphi Method

In business, finance, management, and science, the knowledge, experi-
ence, and expertise of some experts is often preferred to the knowledge,
experience, and expertise of other experts. This is expressed by weights
wi assigned to the experts (Section 3.3). The experts using Fuzzy Del-
phi Method (Section 3.4) were considered of equal importance, hence
there was no need to introduce weights. Now we consider the case when
expert judgements or opinions carry different weights. That leads to
Weighted Fuzzy Delphi Method.

Assume that to expert Ei, i = 1, . . . , n, is attached a weight wi, i =
1, . . . , n, w1 + · · · + wn = 1. The four steps in Fuzzy Delphi Method
remain valid with some modifications, namely: in Steps 2 and 3 the
weighted triangular average Aw

ave (see (3.12)) appears instead of the
triangular average Aave; in Step 4 similarly Aw

ave,B
w
ave,C

w
ave . . . take

part instead of Aave,Bave,Cave . . ..

Case Study 2 Weighted Time Estimation for Technical Realization of
an Innovative Product

Consider Case Study 1 where 15 experts present their opinions ex-
pressed by triangular numbers Ai given on Table 3.1. Assume now that
the experts E1,E3,E5,E8, and E13 are ranked higher (weight 0.1) than
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the rest (weight 0.05); the sum of all weights is one. To facilitate the
calculation of the weighted triangular average we construct Table 3.4.

Table 3.4. Experts, weights, and weighted data.

Ei wi wi × a
(i)
i wi × a

(i)
M wi × a

(i)
2

E1 0.1 199.5 200.3 202
E2 0.05 99.85 100.2 100.5
E3 0.5 200 200.5 201
E4 0.05 99.9 100.15 100.4
E5 0.1 200 200.5 201.5
E6 0.05 99.75 100.5 100.75
E7 0.05 100.5 100.9 101
E8 0.1 199.5 200.7 201.3
E9 0.05 99.75 100.1 100.35
E10 0.05 100.4 100.45 101
E11 0.05 100.5 101 101.2
E12 0.05 99.8 100.1 100.3
E13 0.1 199.8 200.6 201
E14 0.05 99.85 100.25 100.6
E15 0.05 100.1 100.5 101

Total 1 1999.2 2006.75 2013.9

Substituting the totals from the last row in Table 3.4 into (3.12)
gives the weighted triangular average

Aw
ave = (1999.2, 2006.75, 2013.9)

or approximately Awa
ave = (1999, 2007, 2014). It is almost the same result

obtained in Case Study 1. The defuzzification of Awa
ave according to

(3.15) produces the year 2007. Formulas (3.16) give close result. If the
average Aw

ave is defuzzied instead of Awa
ave and then the maximizing value

is rounded up, the same year 2007 is obtained.
2

3.6 Fuzzy PERT for Project Management

Project management is a complicated enterprise involving planning of
various activities which have to be performed in the process of develop-
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ment of a new product or technology.
Projects have a specified beginning and end. For convenience they

are subdivided into activities which also have specified beginnings and
ends. The activities have to be performed in order, some before others,
some simultaneously. The time required for completion of each activity
has to be estimated.

Classical PERT and CPM

Two important classical techniques have been developed to facilitate
planning and controlling projects: “Project Evaluation and Review
Technique” (PERT) and “Critical Path Method” (CPM).

Table 3.5. Material handling system design, fabrication, and assembly
planning data.

Activity Activities Activities Activities Comple-
Description Preceding Concurrent Following tion time

required
(days)

A Mechanical – – B,C 35
Design

B Electrical A C D 35
Design

C Mechanical A B E 55
Fabrication

D Electrical B C,E F 35
Fabrication

E Mechanical C D F 50
Subassembly

F Electrical D,E – G 30
Installation

G Piping F – G 30
Installation

H Start-up, F – – 10
Test, Ship
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PERT was developed by the U.S.A. Navy while planning the produc-
tion of Polaris, the nuclear submarine. CPM was developed about the
same time by researchers from Remington Rand and DuPont for chem-
ical plant maintenance. There are some similarities between PERT and
CPM and often they are used together as one technique.

To illustrate PERT and CPM we present a simplified and mod-
ified version of a real project considered by Fogarty and Hoffmann
(1983). It is schematically given in Table 3.5. The project, called
Material handling system design, involves design, fabrication, assem-
bly, and testing. The project is subdivided into eight activities labeled
A,B,C,D,E, F,G,H. The completion time for each activity in the last
column in Table 3.5 is estimated by managers in charge of activities.

Network planning model

PERT and CPM construct a network planning model from the data in a
table. The model corresponding to Table 3.5 is shown in Fig. 3.6. Each
activity is represented by a square, rectangle, or circle inside of which
is its label and completion time in days.

A

35

C

55

E

50

F

30

G

30

H

3535

DB

10

Fig. 3.6. Network planning model for Material handling system.

The network planning model gives explicit representation of the se-
quential relationship between the activities.

Critical path

Critical path is defined as the path of connected-in-sequence activities
from beginning to the end of the project that requires the longest com-
pletion time. Hence the total time for completion of the project is the
time needed to complete the activities on the critical path.
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The network planning model helps to determine the critical path.
The critical path on Fig. 3.6 is shown by tick arrows connecting activities
A,C,E, F,G, and H. The total time for project completion is 35+55+
50+30+30+10 = 210 days. From Fig. 3.6 one can also see that activities
B and D are not on the critical path. They may not be completed as
planned, but delay should be no more than 35 days. Otherwise activity
F on the critical path will be delayed.

Probabilistic PERT

Time estimation or forecasting for activities completion is inherently
uncertain. To deal with uncertainty, researchers extended the capability
of PERT by employing statistics and probability. PERT requires from
experts three estimates for each activity time completion: the optimistic
time t1, the time required to complete the activity if everything goes
very well; the most likely time tM , the time required to complete the
activity if everything goes according to the plan; the pessimistic time
t2, the time for completion if there are difficulties or things go wrong.
The single time for activity completion is calculated by the weighted
average formula

te =
t1 + 4tM + t2

6
(3.22)

applied for each activity. Formula (3.22) is exactly (3.16) (3) when t is
substituted for m. The total time Te for completion of the project is the
time for completion the activities on the critical path. The times cal-
culated from (3.22) for the network planning model on Fig. 3.6 will be
close to those presented in the squares and in general will provide a bet-
ter estimate. The total time Te (close to 210 days) will be more realistic
than 210 days. Further PERT proceeds with calculation of standard
deviation for te and other probabilistic analysis. We will propose an
alternative to the probabilistic PERT which is less complicated.

The three time estimates t1, tM , t2 for each activity come from ex-
perts who use their knowledge, experience, and whatever relevant in-
formation is available; they are subjective, but not arbitrary. Hence
the nature of uncertainties involved in those types of problems is rather
fuzzy than probabilistic. PERT does not suggest a technique for finding
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t1, tM , t2; only states that they have to be estimated and combined by
the statistical weighted average formula (3.22).

Fuzzy PERT for time forecasting

We propose to improve PERT by using Fuzzy Delphi (Section 3.4) for
estimating t1, tM , t2 for each activity. Experts represent each time for
activity completion by triangular numbers of the type (t1, tM , t2). For
each activity the triangular average number is calculated. To find a
crisp activity time value we have to use defuzzification (Section 3.3).
Simply we may take the maximizing value (formula (3.15)) or resort to
the average formulas (3.16)(1)–(3).

The Fuzzy PERT is illustrated in the following case study.

Case Study 3 (Part 1) Time Forecasting for Project Management of
a Material Handling System

Let us consider the material handling system design on Table 3.5
and Fig. 3.6 and discard the time estimates obtained by the classical
PERT. Now each time activity is to be estimated by three experts; some
may participate in the estimation time for several activities. The top
manager of the project may take part in all group estimates.

The experts are asked to estimate the optimistic, most likely, and
pessimistic completion time of activities A,B, . . . ,H, expressed as tri-
angular numbers TA

i ,TB
i , . . . ,TH

i , i = 1, 2, 3.

Suppose that the experts designated to estimate the completion time
for activity A produce the results on Table 3.6.

Table 3.6. Estimated completion time for activity A.

Expert TA
i Optimistic Most likely Pesimistic

time time time

E1 TA
1 33 35 38

E2 TA
2 33 34 37

E3 TA
3 32 36 39

Total
∑3

i=1 TA
i 98 105 114

The aggregated experts opinions (see (3.11)) give the average time
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for completion of A in days

TA
ave = (

98

3
,

105

3
,

114

3
) = (32.67, 35, 38) ≈ (33, 35, 38).

To find a crisp time for completion we have to defuzzify TA
ave. Ob-

serving that Tave is almost a central triangular number (the midpoint
of the interval [32.67, 38] is 35.335, close to 35, we use formula (3.15)
which gives tmax = 35.

Just for comparison let us apply to TA
ave the three defuzzification

formulas (3.16). We get

(1) t(1)max =
32.67 + 35 + 38

3
= 35.22,

(2) t(2)max =
32.67 + 2(35) + 38

4
= 35.17,

(3) t(3)max =
32.67 + 4(35) + 38

6
= 35.11,

numbers close to 35. Besides, when counting days in those type of
projects, it is irrelevant to keep decimals; we round them off and work
with full days. Usually decimals appear when working with average
formulas.

Similarly the other seven groups of experts can give estimates and
construct tables like Table 3.6. We do not give details but assume
that the rounded average times TB

ave, . . . ,T
H
ave are those presented in

Table 3.7 (TA
ave is also included).

Table 3.7. Average times for activities completion.

Average Optimistic Most likely Pesimistic
Activity activity time time time

time t1 tM t2
A TA

ave 33 35 38
B TB

ave 32 35 38
C TC

ave 51 54 58
D TD

ave 32 34 36
E TE

ave 46 50 53
F TF

ave 27 30 33
G TG

ave 27 29 32
H TH

ave 7 10 12
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Each triangular number representing the average activity time (the
second column in Table 3.7) has to be defuzzified to produce a crisp
number expressing the activity completion time. These triangular num-
bers are almost in central form, hence we can apply formula (3.15) for
defuzzification which produces the numbers in the fourth column labeled
tM . The use of formulas (3.16) gives close results.

The defuzzified times can be presented in an improved network plan-
ning model (see Fig. 3.7)

A

35

C E

50

F

30

G H

35

DB

54 29 10

34

Fig. 3.7. Improved network planning model by using Fuzzy PERT.

The total time for project completion expressed by the triangular
number T is the time for completion the activities on the critical path.
Adding the numbers in the three columns in Table 3.7 designated by
t1, tM , t2, excluding those belonging to activities B and D, gives

T = TA
ave + TC

ave + TE
ave + TF

ave + TG
ave + TH

ave = (192, 208, 226).

Hence the project duration will be between 192 days and 226 days,
most likely 208 days. The last number 208 is the result of defuzzifica-
tion of T using (3.15). The application of formulas (3.16) for deffuzifi-

cation generates the crisp numbers T
(1)
max = 208.67,T

(2)
max = 208.50, and

T
(3)
max = 208.33; they are close to 208. As a conclusion the completion

time for the project is forecasted to be 208 days.

2

Schedule allocation of resources

Activity time duration and allocation of resources, material and human,
are in a close relationship.
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It is accepted as common practice that prior to allocation of re-
sources to a project the critical path network should be established.

The forecasting of activity completion times assumes implicitly that
the needed resources are available and could be allocated to activities
at an efficient rate so that the project proceeds without interruption.
In reality various difficulties may arise and complicate the work.

Often management has the option to apply additional resources to
reduce the activity completion time. This may increase the cost. Short-
ening project length may be desirable because of rewards; late comple-
tion may be penalized.

PERT helps the analysis of issues like those mentioned above and
others concerned with scheduling resources (see for instance, Fogarty
and Hoffmann (1983)). For issues requiring estimations, PERT could
be combined with Fuzzy Delphi in a fashion similar to activity time
forecasting and finding the critical path.

Case Study 3 (Part 2) Fuzzy PERT for Shortening Project Length

Following PERT we introduce the notations: tn—normal time for
completing an activity as planned, tc—crash time (shorten time) for
completing an activity, Cn—normal cost for completing an activity, Cc—
crash cost (increased cost) for completing an activity in crash time. For
each activity, tc, tn, Cn, and Cc have to be estimated.

We illustrate here Fuzzy PERT for shortening project length on the
material handling system discussed in Case Study 3 (Part 1).

To shorten project length means to shorten the time for completion
the critical path., i.e. to shorten the total time Tmax = 208 days. Short-
ening duration time of activities not on the critical path (B and D, see
Fig. 3.6) will not reduce Tmax. However, some resources allocated to B
and D could be reallocated to activities C and D in order to shorten
their completion time (internal reallocation). Here we consider shorten-
ing activities time on the critical path without internal reallocation of
resources.

The normal time tn for each activity is already estimated; it is the
time tmax = tM shown in Table 3.7, the fourth column.

The crash time tc, the normal cost Cn, and the crash cost Cc for each
activity could be forecasted similarly to the normal time tn applying
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Fuzzy Delphi. The defuzzified values based on formula (3.15) will be
denoted by tc max, Cn max, and Cc max, correspondingly.

Here estimation is presented for the normal cost Cn for activity A;
tc and Cc can be estimated similarly.

Three experts are asked to estimate the normal cost for completion
activity A in the form of a triangular number Cn = (Cn1, CnM , Cn2),
where Cn1 is the lowest cost, CnM is the most likely cost, and Cn2 is
the highest cost. Assume the experts estimates are those in Table 3.8.

Table 3.8. Experts estimate for completion activity A at normal cost
Cn.

Expert Lowest cost Cn1 Most likely cost CnM Highest cost Cn2

E1 18,000 20,000 22,000
E2 19,500 21,000 22,000
E3 17,000 19,500 21,000

Total 54,500 60,500 65,000

Using formula (3.11) gives the average normal cost CA
n ave for com-

pleting activity A,

CA
n ave = (18, 166.67, 20, 166.67, 21, 666.67).

Neglecting in CA
n ave the decimals and rounding off the last three

digits to 000, 500, or 1000, gives

CA
n ave = (18, 000, 20, 000, 21, 500).

The defuzzification of CA
n ave according to (3.15) produces 20,000

(formulas (3.16) give numbers close to 20,000).
Further, groups of experts forecast tc, Cn, and Cc for the other

activities on the critical path, then defuzzify, and round off as above.
Assume that the defuzzified results for the activities on the critical path
are those presented in Table 3.9.

To select activities for shortening duration time, PERT uses the
notion of cost slope. With our notations it is presented as (see Fig. 3.8)

k = cost slope =

∣

∣

∣

∣

Cn max − Cc max

tn max − tc max

∣

∣

∣

∣

. (3.23)
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Figure 3.8 shows that as normal time tn max decreases approaching
the crash time tc max, the normal cost Cn max increases approaching the
crash cost Cc max.

Normal

point

Activity duration

n max

c max

C

C

t tc max n max

Activity cost

Crash point

Fig. 3.8. Cost slope for shortening activity time.

Table 3.9. Defuzzified normal and crash times and costs for activities
in Material Handling System.

Normal Crash Normal Crash Cost
Activity time time cost cost slope

tn max tc max Cn max Cc max $ per day

A 35 25 20,000 26,000 600
C 54 30 30,500 40,500 417
E 50 32 28,000 35,000 389
F 30 22 18,500 25,000 813
G 29 20 15,000 19,000 444
H 10 8 7,000 8,000 500

The cost slope coefficient (3.23) calculated for activity A gives

kA =

∣

∣

∣

∣

Cn max − Cc max

tn max − tc max

∣

∣

∣

∣

=

∣

∣

∣

∣

20, 000 − 26, 000

35 − 25

∣

∣

∣

∣

=

∣

∣

∣

∣

−6000

10

∣

∣

∣

∣

= 600.

The cost slope coefficients for the other activities are calculated simi-
larly. The results are displayed in the last column of Table 3.9.
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In general additional resources should be applied first to activities
with the smallest cost slope.

The activities in Table 3.9 are ranked in Table 3.10 according to
their cost slopes—from the smallest to the largest.

Table 3.10. Ranked activities according to cost slope.

Rank Activity Reduced time Additional cost Cost slope
tn max − tc max Cc max − Cn max $ per day

1 E 18 7,000 389
2 C 24 10,000 417
3 G 9 4,000 444
4 H 2 1,000 500
5 A 10 6,000 600
6 A 8 6,500 813

Assume that the management wants to reduce the length of the
project from 208 days to 180 days, a reduction of 28 days. Of the
activities on the critical path, activity E ranked first (Table 3.10) has
the smallest k, $ 389 per day. By investing $ 7,000 the time duration
for activity E can be reduced by 18 days, meaning that the project can
be reduced by 18 days. A further reduction of 10 days must be found.
A good candidate is activity C ranked second on Table 3.10. A 10-day
reduction will cost 10×417 = 4, 170 dollars. However, if there are some
reasons against shortening the activity time for E or for C, or for both,
other options must be examined.

2

3.7 Forecasting Demand

The concept of demand is basic in business and economics. Essentially
demand is composed of two components expressing: (1) the quantity
of a product wanted at a specified price and time; (2) willingness and
ability to purchase a product.

Demand for a new product should be forecasted. Forecasting suc-
ceeds better when history of demand for a similar product is available.
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Unless the product is innovative, even in today’s rapidly changing envi-
ronment, some basic links between the past and the future are present.

The demand for a given inventory item is subdivided into indepen-
dent demand and dependent demand (Orlicky, 1975). Demand is inde-
pendent when it is not related or derived from demand for other items or
products. Otherwise demand is called dependent. Independent demand
must be forecasted while dependent demand should be determined from
the demand of related items.

Example 3.5

Five experts are asked to forecast the annual demand for a new
product using Fuzzy Delphi technique which requires use of triangular

numbers Ai = (a
(i)
1 , a

(i)
M , a

(i)
2 ), i = 1, . . . , 5. Here a

(i)
1 is the smallest

number of units to be produced, a
(i)
M is the most likely number of units,

and a
(i)
2 is the largest number of units. The experts opinions are shown

on Table 3.11.

Table 3.11. Experts estimates for annual demand for a new product.

Ei Ai Smallest Most likely Largest

number a
(i)
1 number a

(i)
M number a

(i)
2

E1 A1 10,000 12,000 13,000
E2 A2 11,000 13,000 15,000
E3 A3 10,000 11,000 14,000
E4 A4 12,000 13,000 14,000
E5 A5 11,000 12,000 13,000

Total 54,000 61,000 69,000

Substituting the total values into (3.11) gives

Aave =

(

54, 000

5
,

61, 000

5
,

69, 000

5

)

= (10800, 12200, 13800).

The defuzzified Aave according to (3.15) is 12200. Hence this number
can be adopted to represent the annual demand for the new product.

2



3.8. Notes 89

3.8 Notes

1. Forecasting in business, finance, and management, regardless of
the methodology used, is a controversial subject. A wide range
of opinions exist, from claims that forecasting is impossible, to
categorical statement that it is a must. Here we present some
quotations on the matter by experts and scientists well acquainted
with classical techniques for forecasting; there is no evidence that
they have knowledge of fuzzy theory.

“The ability to forecast accurately is central to effective plan-
ning strategies. If the forecasts turn out to be wrong, the real
cost and opportunity costs . . . can be considerable. On the
other hand, if they are correct they can provide a great deal
of benefit—if the competitors have not followed similar planning
strategies”(Makridakis, 1990).

“To produce an accurate forecast under conditions of stability,
the forecaster has merely to conclude that the future will be just
like the past. Forecasting may also come out reasonably well if
trends change in a way favorable to the organization, for example,
if markets grow faster than predicted. Then at least extrapolation
does little harm. Typically is overestimation that causes the prob-
lems, for example, by projecting a higher demand for a company’s
products than actually materializes” (Mintzberg, 1994).

“To claim that forecast is impossible is, of course, a rather extreme
way of drawing attention to the frequency with which decision-
makers are prone to suffer expensive surprise”(Earl, 1995).

“The significance of science lies precisely in this: To know in order
to foresee . . .. There is a difference in the degree of foresight and
precision achieved in the various sciences.” (Leon Trotsky, in The
Age of Permanent Revolution: A Trotsky Anthology, 1964). The
last sentence written in 1940 shows that Trotsky was intuitively
close to the concept of fuzziness.

2. Arithmetic operations with fuzzy numbers and in particular with
triangular and trapezoidal numbers can be defined by using op-
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erations with α-level intervals, level by level (see Kaufmann and
Gupta (1985) and G. Bojadziev and M. Bojadziev (1995)).

3. Case Study 1 is based on Kaufmann and Gupta (1988).

4. A simple approximate formula for distance between triangular
numbers is given by G. Bojadziev and M. Bojadziev (1995).


